Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
J Cancer ; 15(10): 3227-3241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706908

RESUMO

Background: Telomere maintenance takes part in the regulation of gastric cancer (GC) pathogenesis and is essential for patients' clinical features. Though the correlation between a single telomere maintenance-related gene and GC has previously been published, comprehensive exploration and systematic analysis remain to be studied. Our study is aimed at determining telomere maintenance-related molecular subtypes and examining their role in GC. Methods: By analyzing the transcriptome data, we identified three telomere maintenance-associated clusters (TMCs) with heterogeneity in clinical features and tumor microenvironment (TME). Then, we screened five prognostic telomere maintenance-related genes and established corresponding TM scores. Additionally, the expression level and biological function of tubulin beta 6 class V (TUBB6) were validated in GC tissues and cells. Results: TMC1 was correlated with EMT and TGF-beta pathway and predicted low tumor mutation burden (TMB) as well as bad prognostic outcomes. TMC3 was associated with cell cycle and DNA repair. In terms of TMB and overall survival, TMC3 exhibited opposite results against TMC1. Significant heterogeneity was observed between TMCs. TUBB6 was upregulated and could promote GC proliferation, migration, and invasion. Conclusion: Altogether, combining bioinformatics and functional experiments, we identified three molecular subtypes based on telomere maintenance-associated genes in GC, which could bring new ideas and novel biomarkers to the clinic.

2.
BMC Biol ; 22(1): 110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735918

RESUMO

BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.


Assuntos
Produtos Agrícolas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Óleos de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Óleos de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Childs Nerv Syst ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635073

RESUMO

BACKGROUND: Craniopharyngioma is a common intracranial tumour in children. Clinical manifestations are related to hypothalamic/pituitary deficiencies, visual impairment, and increased intracranial pressure. Defects in pituitary function cause shortages of growth hormone, gonadotropin, corticotropin, thyrotropin, and vasopressin, resulting in short stature, delayed puberty, feebleness, lethargy, polyuria, etc. However, manifestations involving precocious puberty (PP) are rare. CASE REPORT: In both patients, surgical resection was performed after the diagnosis of craniopharyngioma, and breast development occurred postoperatively at one month in one patient and at one year and three months in the other patient. Central precocious puberty (CPP) was diagnosed via relevant examinations. Leuprorelin was injected subcutaneously every 28 days, and changes in height, weight, bone age, gonadal ultrasound and sex hormones were recorded. During the follow-up of the two children, the sex hormone levels were significantly reduced, and significant acceleration in bone age was not observed. CONCLUSIONS: CPP was induced by craniopharyngioma surgery, and treatment with gonadotropin-releasing hormone analogues (GnRHa) inhibited sexual development and bone age progression. More attention should be given to monitoring for CPP during long-term follow-up of craniopharyngiomas in the clinic.

4.
Gene ; 918: 148474, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670393

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer deaths, and non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer-related mortality. In recent years, there have been numerous treatments for non-small cell lung cancer, but the cure and survival rates are still extremely low. Isobavachalcone (IBC) belongs to the chalcone component of the traditional Chinese medicine Psoralea corylifolia L., and is a unique Protein kinase B (AKT) pathway inhibitor with significant anticancer effects. Previous studies have shown that IBC possess a variety of biological properties, including anti-cancer, anti-inflammatory, and antioxidant properties. This study focused on the use of network pharmacology analysis, molecular docking technology and experimental validation to elucidate the potential mechanisms of IBC for the treatment of NSCLC. METHODS: Screening key genes and pathways of IBC action in NSCLC using network pharmacology. The IBC target genes were from The Encyclopedia of Traditional Chinese Medicine (ETCM) and BATMAN-TCM databases, the NSCLC target genes were from GeneCards, Online Mendelian Inheritance in Man (OMIM) and The Therapeutic Target database (TTD) databases, both of which were taken as intersecting genes for protein-protein interaction network analysis and enrichment analysis, and the binding energies of the compounds to the core targets were further verified by molecular docking. Cell lines in vitro experiments were then performed to further unravel the mechanism of IBC for NSCLC. RESULTS: A total of 279 potential targets were retrieved by searching the intersection of IBC and NSCLC targets. Protein-protein interaction (PPI) network analysis indicated that 6 targets, including AKT1, RXRA, NCOA1, RXRB, RARA, PPARG were hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IBC treatment of NSCLC mainly involves steroid binding, transcription factor activity, Pathways in cancer, cAMP signaling pathway, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Among them, the AMPK signaling pathway, which contained the largest number of enriched genes, may play a greater role in the treatment of NSCLC. Then, the results of in vitro experiment indicated that IBC could inhibit proliferation of NSCLC cells and induce cell autophagy and apoptosis. The results also showed that IBC could increase the protein expression of AMPK and decrease the protein expression of AKT and mammalian target of rapamycin (mTOR), suggesting that IBC can treat NSCLC by inducing cellular autophagy and apoptosis as well as modulating AMPK and AKT signaling pathways. CONCLUSIONS: In summary, this study provided a new insight into the protective mechanism of IBC against NSCLC through network pharmacology and experimental validation.

5.
Acta Pharm Sin B ; 14(4): 1605-1623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572102

RESUMO

Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKß) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.

6.
Sci Total Environ ; 928: 172428, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615765

RESUMO

The increasing level of mechanization in coal mining means more dust and gas are generated during excavation operations in tunnels. The high concentrations of dust and gas severely affect production efficiency and the physical and mental health of workers. Here, Ansys Fluent simulations were performed to derive the spatiotemporal evolution of coupled airflow-dust-gas diffusion in a low-gas excavation face. The aim was to optimize pollution control by determining the optimal duct distance, L, from the working face in the excavation tunnel. Our results showed that the airflow field affects the coupled diffusion and transport of dust and gas. According to a comparison of the effects of different duct distances from the working face, when L = 6 m, the average dust concentration in the tunnel is low (257.6 mg/m3), and the average gas concentration in the tunnel is 0.28 %, which does not exceed the safety limit. Accordingly, the optimal distance of the duct for pollution control is 6 m. The results of field measurements supported the validity of the simulation. Our findings can be used to improve the air quality in tunnels, thereby keeping miners safe and the working area clean.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124255, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608562

RESUMO

The kidney allograft has been under continuous attack from diverse injuries since the very beginning of organ procurement, leading to a gradual decline in function, chronic fibrosis, and allograft loss. It is vital to routinely and precisely monitor the risk of injuries after renal transplantation, which is difficult to achieve because the traditional laboratory tests lack sensitivity and specificity, and graft biopsies are invasive with the risk of many complications and time-consuming. Herein, a novel method for the diagnosis of graft injury is demonstrated, using deep learning-assisted surface-enhanced Raman spectroscopy (SERS) of the urine analysis. Specifically, we developed a hybrid SERS substrate composed of gold and silver with high sensitivity to the urine composition under test, eliminating the need for labels, which makes measurements easy to perform and meanwhile results in extremely abundant and complex Raman vibrational bands. Deep learning algorithms were then developed to improve the interpretation of the SERS spectral fingerprints. The deep learning model was trained with SERS signals of urine samples of recipients with different injury types including delayed graft function (DGF), calcineurin-inhibitor toxicity (CNIT), T cell-mediated rejection (TCMR), antibody-mediated rejection (AMR), and BK virus nephropathy (BKVN), which explored the features of these types and achieved the injury differentiation with an overall accuracy of 93.03%. The results highlight the potential of combining label-free SERS spectroscopy with deep learning as a method for liquid biopsy of kidney allograft injuries, which can provide great potential to diagnose and evaluate allograft injuries, and thus extend the life of kidney allografts.


Assuntos
Aprendizado Profundo , Transplante de Rim , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Transplante de Rim/efeitos adversos , Aloenxertos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/urina , Ouro/química
8.
Anal Chem ; 96(11): 4647-4656, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441540

RESUMO

Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.e., AP site) and their subsequent assembly on a gold nanoparticle (AuNP). Upon recognition and cleavage of the AP site in the substrate probe by APE1, the loop of the substrate probe unfolds, exposing telomeric primer (TP) with the 3'-OH end. Subsequently, the TP is elongated by telomerase at the 3'-OH end to generate a long telomeric product. The resultant telomeric product acts as a swing arm that can hybridize with a reporter probe to initiate the APE1-powered walking reaction, ultimately generating a significantly enhanced fluorescence signal. Notably, endogenous APE1 is used as the driving force of the DNA nanomachine, avoiding the introduction of exogenous auxiliary cofactors into the cellular microenvironment. Owing to the high kinetics and high amplification efficiency of the APE1-powered DNA nanomachine, this strategy enables one-step sensitive sensing of telomerase in vitro and in vivo. It can successfully discriminate telomerase activity between cancer cells and normal cells, screen telomerase inhibitors, and monitor the variations of telomerase activity in living cells, offering a prospective platform for molecular diagnostics and drug discovery.


Assuntos
Nanopartículas Metálicas , Telomerase , Humanos , Telomerase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Células HeLa , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
9.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475487

RESUMO

TCP transcription factors play a key role in regulating various developmental processes, particularly in shoot branching, flower development, and leaf development, and these factors are exclusively found in plants. However, comprehensive studies investigating TCP transcription factors in pepper (Capsicum annuum L.) are lacking. In this study, we identified 27 CaTCP members in the pepper genome, which were classified into Class I and Class II through phylogenetic analysis. The motif analysis revealed that CaTCPs in the same class exhibit similar numbers and distributions of motifs. We predicted that 37 previously reported miRNAs target 19 CaTCPs. The expression levels of CaTCPs varied in various tissues and growth stages. Specifically, CaTCP16, a member of Class II (CIN), exhibited significantly high expression in flowers. Class I CaTCPs exhibited high expression levels in leaves, while Class II CaTCPs showed high expression in lateral branches, especially in the CYC/TB1 subclass. The expression profile suggests that CaTCPs play specific roles in the developmental processes of pepper. We provide a theoretical basis that will assist in further functional validation of the CaTCPs.

10.
Medicine (Baltimore) ; 103(10): e37345, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457559

RESUMO

RATIONALE: Because of the normal phenotype, carriers of specific chromosomal translocations are often diagnosed only after their development of associated malignancies, recurrent miscarriages, and reproductive difficulties. In this paper, we report primary balanced fetal chromosomal translocations by performing the necessary invasive prenatal diagnosis in couples with previous malformations coupled with prenatal testing suggesting a high risk for trisomy 21. PATIENT CONCERNS: Case 1 and Case 2 couples had malformed children, and Case 3 couples had a high risk of trisomy 21 on noninvasive preconception serological testing. DIAGNOSIS AND INTERVENTION: A balanced chromosomal translocation diagnosis was confirmed by karyotyping of fetal cells obtained by amniocentesis. OUTCOMES: All 3 couples decided to continue their pregnancies after learning about the consequences of the chromosomal abnormalities. Approximately a year after the children were born, the staff of the Prenatal Diagnostic Center followed up with a phone call and found that the children physical development and intelligence were normal. LESSON: This case report reports healthy chromosomal balanced translocation newborns born to couples with poor maternal history and couples with abnormalities suggested by preconception testing, and followed up with the newborns to provide some experience in prenatal diagnosis and genetic counseling for chromosomal balanced translocations.


Assuntos
Anormalidades Múltiplas , Transtornos Cromossômicos , Síndrome de Down , Gravidez , Feminino , Criança , Recém-Nascido , Humanos , Translocação Genética , Síndrome de Down/diagnóstico , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Diagnóstico Pré-Natal , Feto , Anormalidades Múltiplas/genética , Cromossomos
11.
Front Vet Sci ; 11: 1347585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371596

RESUMO

This study aims to investigate differences in metabolism regarding the transition cows. Eight cows were selected for the test. Serum was collected on antepartum days 14th (ap14) and 7th (ap7) and postpartum days 1st (pp1), 7th (pp7), and 14th (pp14) to detect biochemical parameters. The experiment screened out differential metabolites in the antepartum (ap) and postpartum (pp) periods and combined with metabolic pathway analysis to study the relationship and role between metabolites and metabolic abnormalities. Results: (1) The glucose (Glu) levels in ap7 were significantly higher than the other groups (p < 0.01). The insulin (Ins) levels of ap7 were significantly higher than pp7 (p = 0.028) and pp14 (p < 0.01), and pp1 was also significantly higher than pp14 (p = 0.016). The insulin resistance (HOMA-IR) levels of ap7 were significantly higher than ap14, pp7, and pp14 (p < 0.01). The cholestenone (CHO) levels of ap14 and pp14 were significantly higher than pp1 (p < 0.01). The CHO levels of pp14 were significantly higher than pp7 (p < 0.01). The high density lipoprotein cholesterol (DHDL) levels of pp1 were significantly lower than ap14 (p = 0.04), pp7 (p < 0.01), and pp14 (p < 0.01), and pp14 was also significantly higher than ap14 and ap7 (p < 0.01). (2) The interferon-gamma (IFN-γ) and tumor necrosis factor α (TNF-α) levels of ap7 were significantly higher than pp1 and pp7 (p < 0.01); the immunoglobulin A (IgA) levels of pp1 were significantly higher than ap7 and pp7 (p < 0.01); the interleukin-4 (IL-4) levels of pp7 were significantly higher than ap7 and pp1 (p < 0.01), the interleukin-6 (IL-6) levels of ap7 and pp1 were significantly higher than pp7 (p < 0.01). (3) Metabolomics identified differential metabolites mainly involved in metabolic pathways, such as tryptophan metabolism, alpha-linolenic acid metabolism, tyrosine metabolism, and lysine degradation. The main relevant metabolism was concentrated in lipid and lipid-like molecules, organic heterocyclic compounds, organic acids, and their derivatives. The results displayed the metabolic changes in the transition period, which laid a foundation for further exploring the mechanism of metabolic abnormalities in dairy cows in the transition period.

13.
Small ; : e2308724, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229571

RESUMO

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4 . This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

14.
Small ; 20(13): e2308688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946695

RESUMO

Lymph node metastasis (LNM) is a significant barrier to the prognosis of patients with gastric cancer (GC). Helicobacter pylori (H. pylori)-positive GC patients experience a higher rate of LNM than H. pylori-negative GC patients. However, the underlying mechanism remains unclear. Based on the findings of this study, H. pylori-positive GC patients have greater lymphangiogenesis and lymph node immunosuppression than H. pylori-negative GC patients. In addition, miR-1246 is overexpressed in the plasma small extracellular vesicles (sEVs) of H. pylori-positive GC patients, indicating a poor prognosis. Functionally, sEVs derived from GC cells infected with H. pylori deliver miR-1246 to lymphatic endothelial cells (LECs) and promote lymphangiogenesis and lymphatic remodeling. Mechanistically, miR-1246 suppresses GSK3ß expression and promotes ß-Catenin and downstream MMP7 expression in LECs. miR-1246 also stabilizes programmed death ligand-1 (PD-L1) by suppressing GSK3ß and induces the apoptosis of CD8+ T cells. Overall, miR-1246 in plasma sEVs may be a novel biomarker and therapeutic target in GC-LNM.


Assuntos
Vesículas Extracelulares , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Linfangiogênese , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glicogênio Sintase Quinase 3 beta , MicroRNAs/genética , Vesículas Extracelulares/metabolismo
15.
Adv Healthc Mater ; 13(4): e2302395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947303

RESUMO

Ferrofluidic robots with excellent deformability and controllability have been intensively studied recently. However, most of these studies are in vitro and the use of ferrofluids for in vivo medicinal applications remains a big challenge. The application of ferrofluidic robots to the body requires the solution of many key problems. In this study, biocompatibility, controllability, and tumor-killing efficacy are considered when creating a ferrofluid-based millirobot for in vivo tumor-targeted therapy. For biocompatibility problems, corn oil is used specifically for the ferrofluid robot. In addition, a control system is built that enables a 3D magnetic drive to be implemented in complex biological media. Using the photothermal conversion property of 1064 nm, the ferrofluid robot can kill tumor cells in vitro; inhibit tumor volume, destroy the tumor interstitium, increase tumor cell apoptosis, and inhibit tumor cell proliferation in vivo. This study provides a reference for ferrofluid-based millirobots to achieve targeted therapies in vivo.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Terapia Fototérmica , Neoplasias/terapia , Neoplasias/patologia , Fototerapia
16.
ChemMedChem ; 19(2): e202300467, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38031642

RESUMO

As a critical epigenetic modulator of gene expression, histone deacetylases (HDACs) have been involved in the pathogenesis and therapeutic investigation of cancer. Quinolizidine alkaloid sophoridine is known to have anticancer efficacy but with limited indication. By incorporating the pharmacophore of the HDAC inhibitor into the ring-opened sophoridine core, a new series of sophoridine hydroxamic acid derivatives were synthesized. After structure-activity studies, a selected compound was found to exert significant cytotoxicity in triple-negative breast cancer CAL-51 cells (IC50 1.17 µM), and demonstrated low nanomolar inhibitory potency toward HDAC1/3/6. Cellular functional assays indicated that this compound was able to induce apoptosis and cause accumulation of cells in the S phase of the cell cycle. Western blot analysis revealed it to decrease the expression of DNMT1, DNMT3a and DNMT3b by down-regulating phosphor-ERK1/2. Furthermore, treatment with this compound proved to block the PI3K/AKT/mTOR signaling in the PI3KCA and PTEN-mutant CAL-51 cells. Collectively, this work provides a novel lead compound for the development of potential therapeutics against triple-negative breast cancers, possibly mesenchymal-like subtype.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Matrinas , Alcaloides Quinolizidínicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Histona Desacetilase 1 , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
17.
Cancer Innov ; 2(4): 237-239, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38089750

RESUMO

Nuclear receptor coactivator 4 (NCOA4) protein is a selective cargo receptor that plays a crucial role in ferritinophagy by targeting and delivering the ferritin iron storage protein to lysosomes for degradation and releasing iron. TRIM7 overexpression inhibits ferroptosis in glioblastoma cells by ubiquitinating NCOA4 protein.

18.
Front Radiol ; 3: 1257565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954919

RESUMO

Radiation-induced cerebral necrosis, also known as radiation encephalopathy, is a debilitating condition that significantly impacts the quality of life for affected patients. Secondary central nervous system lymphoma (SCNSL) typically arises from highly aggressive mature B-cell lymphoma, but rarely from extranodal natural killer T-cell lymphoma (ENKTL). Treatment will be guided by differentiation between lymphoma progression from brain necrosis, and is particularly important for critically ill patients in an acute setting. However, differential diagnosis remains challenging because they share similar clinical manifestations and have no specific imaging features. We present the case of a 52-year-old man with ENKTL who suffered an emergency brain herniation secondary to massive radiation necrosis. The diagnosis established by brain biopsy ultimately led to appropriate treatment. The importance of the diagnostic biopsy is highlighted in this case for distinguishing between radiation necrosis and SCNSL.

19.
J Biomed Res ; 38(1): 51-65, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981573

RESUMO

Long noncoding RNA (lncRNA) IDH1 antisense RNA 1 ( IDH1-AS1) is involved in the progression of multiple cancers, but its role in epithelial ovarian cancer (EOC) is unknown. Therefore, we investigated the expression levels of IDH1-AS1 in EOC cells and normal ovarian epithelial cells by quantitative real-time PCR (qPCR). We first evaluated the effects of IDH1-AS1 on the proliferation, migration, and invasion of EOC cells through cell counting kit-8, colony formation, EdU, transwell, wound-healing, and xenograft assays. We then explored the downstream targets of IDH1-AS1 and verified the results by a dual-luciferase reporter, qPCR, rescue experiments, and Western blotting. We found that the expression levels of IDH1-AS1 were lower in EOC cells than in normal ovarian epithelial cells. High IDH1-AS1 expression of EOC patients from the Gene Expression Profiling Interactive Analysis database indicated a favorable prognosis, because IDH1-AS1 inhibited cell proliferation and xenograft tumor growth of EOC. IDH1-AS1 sponged miR-518c-5p whose overexpression promoted EOC cell proliferation. The miR-518c-5p mimic also reversed the proliferation-inhibiting effect induced by IDH1-AS1 overexpression. Furthermore, we found that RNA binding motif protein 47 (RBM47) was the downstream target of miR-518c-5p, that upregulation of RBM47 inhibited EOC cell proliferation, and that RBM47 overexpressing plasmid counteracted the proliferation-promoting effect caused by the IDH1-AS1 knockdown. Taken together, IDH1-AS1 may suppress EOC cell proliferation and tumor growth via the miR-518c-5p/RBM47 axis.

20.
Cell Death Dis ; 14(10): 651, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798282

RESUMO

Embryo implantation into the uterus is the gateway for successful pregnancy. Proper migration and invasion of embryonic trophoblast cells are the key for embryo implantation, and dysfunction causes pregnancy failure. Protein glycosylation plays crucial roles in reproduction. However, it remains unclear whether the glycosylation of trophoblasts is involved in trophoblast migration and invasion processes during embryo implantation failure. By Lectin array, we discovered the decreased α1,3-fucosylation, especially difucosylated Lewis Y (LeY) glycan, in the villus tissues of miscarriage patients when compared with normal pregnancy women. Downregulating LeY biosynthesis by silencing the key enzyme fucosyltransferase IV (FUT4) inhibited migration and invasion ability of trophoblast cells. Using proteomics and translatomics, the specific LeY scaffolding glycoprotein of mesoderm-specific transcript (MEST) with glycosylation site at Asn163 was identified, and its expression enhanced migration and invasion ability of trophoblast cells. The results also provided novel evidence showing that decreased LeY modification on MEST hampered the binding of MEST with translation factor eIF4E2, and inhibited implantation-related gene translation initiation, which caused pregnancy failure. The α1,3-fucosylation of MEST by FUT4 may serve as a new biomarker for evaluating the functional state of pregnancy, and a target for infertility treatment.


Assuntos
Implantação do Embrião , Trofoblastos , Gravidez , Humanos , Feminino , Glicosilação , Trofoblastos/metabolismo , Células Epiteliais/metabolismo , Biomarcadores/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA